Extremely thermophilic energy metabolisms: biotechnological prospects.

نویسندگان

  • Christopher T Straub
  • Benjamin M Zeldes
  • Gerrit J Schut
  • Michael Ww Adams
  • Robert M Kelly
چکیده

New strategies for metabolic engineering of extremely thermophilic microorganisms to produce bio-based fuels and chemicals could leverage pathways and physiological features resident in extreme thermophiles for improved outcomes. Furthermore, very recent advances in genetic tools for these microorganisms make it possible for them to serve as metabolic engineering hosts. Beyond providing a higher temperature alternative to mesophilic platforms, exploitation of strategic metabolic characteristics of high temperature microorganisms grants new opportunities for biotechnological products. This review considers recent developments in extreme thermophile biology as they relate to new horizons for energy biotechnology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cellulases from Thermophilic Fungi: Recent Insights and Biotechnological Potential

Thermophilic fungal cellulases are promising enzymes in protein engineering efforts aimed at optimizing industrial processes, such as biomass degradation and biofuel production. The cloning and expression in recent years of new cellulase genes from thermophilic fungi have led to a better understanding of cellulose degradation in these species. Moreover, crystal structures of thermophilic fungal...

متن کامل

Candidatus Nitrosocaldus cavascurensis, an Ammonia Oxidizing, Extremely Thermophilic Archaeon with a Highly Mobile Genome

Ammonia oxidizing archaea (AOA) of the phylum Thaumarchaeota are widespread in moderate environments but their occurrence and activity has also been demonstrated in hot springs. Here we present the first enrichment of a thermophilic representative with a sequenced genome, which facilitates the search for adaptive strategies and for traits that shape the evolution of Thaumarchaeota. Candidatus N...

متن کامل

Bacterial Lifestyle in a Deep-sea Hydrothermal Vent Chimney Revealed by the Genome Sequence of the Thermophilic Bacterium Deferribacter desulfuricans SSM1

The complete genome sequence of the thermophilic sulphur-reducing bacterium, Deferribacter desulfuricans SMM1, isolated from a hydrothermal vent chimney has been determined. The genome comprises a single circular chromosome of 2,234,389 bp and a megaplasmid of 308,544 bp. Many genes encoded in the genome are most similar to the genes of sulphur- or sulphate-reducing bacterial species within Del...

متن کامل

Thermostable Xylanases of Microbial Origin: Recent Insights and Biotechnological Potential

Xylanases are hydrolases which depolymerise the plant cell wall component-xylan, the second most abundant polysaccharide. They are mainly produced by microorganisms but can also be found in plants, marine algae, protozoans, crustaceans, insects, and snails. Because of their ability to break down xylan, these enzymes especially of microbial origin, have attracted more attention due to their pote...

متن کامل

Ecology and biotechnological potential of the thermophilic fermentative Coprothermobacter spp.

Thermophilic bacteria have been isolated from several terrestrial, marine and industrial environments. Anaerobic digesters treating organic wastes are often an important source of these microorganisms, which catalyze a wide array of metabolic processes. Moreover, organic wastes are primarily composed of proteins, whose degradation is often incomplete. Coprothermobacter spp. are proteolytic anae...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current opinion in biotechnology

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2017